

PLASMA-ASSISTED CO₂ RECYCLING: INVESTIGATION ON VOLUME AND SURFACE KINETICS

T. Silva

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

The development of green technologies that accelerate the transition towards a more sustainable and resilient world with zero net emissions by 2050 requires long-term and large-scale energy storage solutions. A promising and environmentally friendly solution to this problem relies on the development of a suitable energy storage scheme in which the excess of renewable power is used to convert feedstock of pollutant gases such as CO_2 into chemical fuels. In this context, over the past years, non-thermal plasmas have gained much attention regarding CO_2 decomposition due to their potential to activate CO_2 at reduced energy cost, while exciting CO_2 vibrations that efficiently contribute to overcome the dissociation barrier. This has led to a growing field of research aimed at combining renewable electricity with plasmas to convert pollutant gases into synthetic fuels for energy storage pathways.

In this talk, I will provide an overview of recent research associated to plasma-based conversion, while discussing different lines of investigation and current challenges related to plasma-surface interactions. More specifically, I will address: (i) the role of industrial gases on CO₂ decomposition in a plasma environment, (ii) the impact of volume and surface kinetics on vibrational excitation and (iii) recent efforts targeted at developing plasma-based reaction mechanisms to account for the volume/surface production of value-added products in gas reforming applications. In all these situations, modelling studies, based on the coupling of the electron Boltzmann equation with a system of rate balance equations, are compared against experimental data obtained in different plasma reactors, including DC glow discharges and inductive coupled plasmas.

Acknowledgments

This work was partially supported by the Portuguese FCT-Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FIS-PLA/1616/2021, EXPL/FIS-PLA/0076/2021